If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+18x=193
We move all terms to the left:
7x^2+18x-(193)=0
a = 7; b = 18; c = -193;
Δ = b2-4ac
Δ = 182-4·7·(-193)
Δ = 5728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5728}=\sqrt{16*358}=\sqrt{16}*\sqrt{358}=4\sqrt{358}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-4\sqrt{358}}{2*7}=\frac{-18-4\sqrt{358}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+4\sqrt{358}}{2*7}=\frac{-18+4\sqrt{358}}{14} $
| 3(5x-3)=2x-35 | | 7x-1=3x+47 | | 0.08t+0.11(100-t)=9.8 | | 5.6=3.2x+13.2 | | 5-3(2-x)=1 | | z-3,5z+1,2=-0,3 | | (4x-3)(3x+2)-2=(6x-7)(2x-5) | | 1-49x²=0 | | 1.5x+4=56 | | 1/2x+4*x=56 | | 5(x+5)=3(x-4) | | -(2x-1)(3x+5)=50-6x(x-3) | | 4^x+2^(2x+1)=50 | | 3r^2+17=0 | | 5x+46=2x+19 | | (9-x)^2=90 | | 5/3+1/7t=6 | | T=4/5(t+10) | | x+3*5=1 | | 5x+16x=24 | | -2x+27=x+12 | | -7/9k=1/8-5/18 | | 33=10x-4 | | 184-79=m | | 12+3x-5=8x-5x | | x=10+7/17 | | 180=8x+7+9x-4 | | 15.00-8.49=m | | 180=5x+7x-34 | | -101=7(3a+1)-3 | | -3(-6p+5)+2p=125 | | 6(7p-1)=162 |